Friedelanes from Crossopetalum lobatum. A New Example of a Triterpene Anhydride

by Félix M. Rodríguez, Nayra R. Perestelo, Ignacio A. Jiménez, and Isabel L. Bazzocchi*

Instituto Universitario de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, ES-38206 La Laguna, Tenerife (phone: +34922318576; fax: +34922318571; e-mail: ilopez@ull.es)

Three new triterpenoids, lobatanhydride (1), 3α ,25-dihydroxyfriedelan-2-one (2) and 1β ,25-dihydroxyfriedelan-3-one (3), were isolated from *Crossopetalum lobatum* LUNDELL. In addition, four known friedelane triterpenes, friedelin (4), 2α -hydroxy-3-oxofriedelan-30-oic acid (5), 28-hydroxyfriedelane-1,3-dione (6), and 29-hydroxyfriedelane-1,3-dione (7) were isolated. Lobatanhydride represents the first example of a triterpene anhydride with the A ring expanded to a seven-membered ring. The structures were established on the basis of extensive spectral investigation, and by comparison with the respective literature values.

Introduction. – The Celastraceae species have a long history in traditional medicine [1]. They produce an extraordinary variety of bioactive metabolites, including dihydro- β -agarofuran sesquiterpenes [2] and quinone-methide triterpenes [3]. Triterpenes are frequent among the components of species of this family and invariably belong to the friedo-oleane, lupane, oleane, glutinane, taraxerane, ursane, dammarane, and D:B-friedobaccharane series [3]. Friedelane triterpenoids are reported to have interesting biological, pharmacological, or medicinal activities, including antineoplastic [4] and anti-AIDS activities [5]. Furthermore, reports on triterpene anhydrides are scant in the field of natural products. Up to now, celastranhydride, biogenetically related to the quinone-methides [6], represents the only triterpene anhydride reported from Celastraceae.

Within the context of our investigations of the Celastraceae species, the screening of four species to determine the antimicrobial, cytotoxic [7], and xanthine oxidase inhibitory [8] effects was undertaken. Among these, *Crossopetalum lobatum* LUNDELL was one of the most promising in this study. Further investigations of the chemical constituents from the leaves of *C. lobatum* led to the isolation of three new triterpenes, lobatanhydride (1), 3α ,25-dihydroxyfriedelan-2-one (2), and 1β ,25-dihydroxyfriedelan-3-one (3). To the best of our knowledge, lobatanhydride represents the first example of a triterpene anhydride with the *A* ring expanded to a seven-membered ring. Their structures were determined by application of 1D- and 2D-NMR techniques. In addition, four friedelane triterpenes were isolated and their structures were identified as friedelin (4), 2α -hydroxy-3-oxofriedelan-30-oic acid (5), 28-hydroxyfriedelane-1,3-dione (6) and 29-hydroxyfriedelane-1,3-dione (7) (*Fig. 1*) by comparison of their spectral data with values reported in the literature.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of 1-7

Results and Discussion. – Compound **1**, named lobatanhydride, was isolated as an amorphous solid, and the HR-EI-MS exhibited a molecular-ion peak at m/z 472.3564 (M^+ , calc. 472.3553), indicating the molecular formula $C_{30}H_{48}O_4$. Its IR spectrum displayed absorption bands characteristic of OH (3446 cm⁻¹) and CO (1775 cm⁻¹) groups. The ¹H-NMR spectrum (*Table 1*) showed signals for seven Me groups, one of them as *d* at δ (H) 1.09 (J = 7.1) and a HO–CH₂ signal at δ (H) 4.59 and 4.64 (*d* each, J = 7.6, 2 H). A *dd* at δ (H) 2.63 (J = 7.5, 18.9, 1 H), a *q* at δ (H) 2.55 (J = 7.1, 1 H), and a *d* at δ (H) 2.39 (J = 18.9, 1 H), were also observed.

The ¹³C-NMR spectrum of **1** (*Table 1*) indicated the presence of 30 C-atoms, including seven Me, eleven CH₂, and four CH groups, and eight quaternary C-atoms. The characteristic downfield signal at $\delta(C)$ 72.6 was assigned to an OH-substituted C-atom. Moreover, the presence of two C=O groups at $\delta(C)$ 170.4 and 177.0, and the lack of absorption bands for COOH groups in the IR spectrum, suggested the presence of an anhydride moiety in the molecule. These data indicated that **1** is a friedelane triterpene with an anhydride and a OH group.

The full assignments of the¹H- and ¹³C-NMR signals were performed by ¹H,¹H-COSY, HSQC, and HMBC experiments. Therefore, the HMBC (*Table 1*) showed as most relevant correlations those of $C(3)^1$) with H-C(4) and Me(23), and correlations of C(2), C(5), and C(9) with $CH_2(1)$. Correlations of $CH_2(25)$ with H-C(8), H-C(10),

¹⁾ Arbitrary numbering. For systematic names, see *Exper. Part.*

	$\delta(\mathrm{H})$	$\delta(C)$	HMBC ($C \rightarrow H$)
CH ₂ (1)	2.39 $(d, J = 18.9; H_a)$	27.8	H-C(10)
	2.63 $(dd, J = 7.5, 18.9; H_{\beta})$		
C(2)		170.4	$CH_2(1), H-C(10)$
C(3)		177.0	H-C(4), Me(23)
H-C(4)	2.55 (q, J = 7.1)	47.3	H-C(10), Me(23), Me(24)
C(5)		38.9	$CH_2(1), H-C(4), Me(24)$
$CH_{2}(6)$	$1.68 - 1.70 \ (m)$	34.5	H-C(4), Me(24)
$CH_{2}(7)$	1.52 ^b)	17.1	
H-C(8)	1.48 - 1.51 (m)	52.0	H-C(10), Me(26)
C(9)		35.3	$CH_2(1), CH_2(7), H-C(10)$
H - C(10)	1.66 - 1.69 (m)	46.1	Me(24), Me(25)
CH ₂ (11)	1.84 (br. $d, J = 12.8$)	32.0	
$CH_{2}(12)$	$1.41 - 1.44 \ (m)$	30.1	Me(27)
C(13)		39.6	Me(26), Me(27)
C(14)		38.0	Me(26), Me(27)
CH ₂ (15)	1.27^{b} , 1.48^{b})	32.3	
CH ₂ (16)	1.55 - 1.58 (m)	35.7	Me(28)
C(17)		30.0	Me(28)
H - C(18)	1.52 ^b)	42.6	Me(27), Me(28)
CH ₂ (19)	$1.36 - 1.40 \ (m)$	35.2	Me(30)
C(20)		28.1	Me(29), Me(30)
CH ₂ (21)	1.27^{b} , 1.48^{b})	32.6	Me(29), Me(30)
$CH_{2}(22)$	0.95 - 0.98, 1.48 - 1.51 (2m)	39.1	Me(28)
Me(23)	1.09 (d, J = 7.1)	12.5	H-C(4)
Me(24)	1.13(s)	20.6	H - C(10)
CH ₂ (25)	$4.59, 4.64 \ (2d, J = 7.6)$	72.6	$H-C(8), H-C(10), CH_2(11)$
Me(26)	0.91(s)	20.2	$H-C(8), CH_2(15)$
Me(27)	1.06 (s)	18.5	H-C(18)
Me(28)	1.18(s)	32.1	H - C(18)
Me(29)	0.95(s)	35.0	Me(30)
Me(30)	1.00(s)	31.6	Me(29)

Table 1. ¹*H*- (400 MHz) and ¹³*C*-*NMR*^a) (100 MHz, DEPT) Data of **1** in $CDCl_3^{-1}$). δ in ppm, J in Hz.

^a) Data are based on DEPT and HSQC experiments. ^b) Overlapping signals.

and CH₂(11) were also observed. The relative configuration of **1** was determined on the basis of a ROESY experiment and biogenetic considerations. Thus, the correlations observed between the H-atom signal at $\delta(H) 2.39 (d, J = 18.9)$ and the H-atom signal at $\delta(H) 1.66 - 1.69 (m, H - C(10))$, and of the H-atom signals at $\delta(H) 2.63 (dd, J = 7.5, 18.9)$ and the H-atom signal at $\delta(H) 1.13 (s, Me(24))$, allowed the assignment of the α - and β -CH₂(1) H-atoms. Moreover, correlations of the H-atom signals at $\delta(H) 4.59, 4.64 (2 d, J = 7.6, CH_2(25))$, and the H-atom signals at $\delta(H) 1.18 (s, Me(28))$ and $\delta(H) 1.00 (s, Me(30))$, were also observed. In accord with all these data, the structure of lobatanhydride (**1**) was established as 2,3-*seco*-2,3-epoxy-25-hydroxy-2,3-friedelanedione¹).

Although celastranhydride [6], a triterpene anhydride, has been reported from species of the Celastraceae family, compound 1 represents the first example of a triterpene anhydride with the A ring expanded to a seven-membered ring.

Compound **2** was isolated as an amorphous solid. Its HR-EI-MS revealed a molecular weight at m/z 458.3772, consistent with the molecular formula $C_{30}H_{50}O_3$ and six degrees of unsaturation. The IR spectrum displayed absorption bands for OH (3479 cm⁻¹) and C=O (1713 cm⁻¹) groups. The ¹H-NMR spectrum (*Table 2*) showed signals for seven Me groups, one of them as a *d* at $\delta(H)$ 1.09 (J=6.6). The signals at $\delta(H)$ 3.83 (dd, J=2.3, 11.7, 1 H) and $\delta(H)$ 4.00 and 4.05 (d each, J=11.5, 2 H) suggested the presence of a secondary and a primary OH group in **2**, which was supported by the signals at $\delta(C)$ 63.7 and 77.2 in the ¹³C-NMR spectrum (*Table 2*). The signals at $\delta(H)$ 3.05 (dt, J = 1.2, 14.1, 14.3, 1 H) and $\delta(H)$ 2.70 (dd, J = 2.8, 14.1, 1 H) were assigned to a CH₂ group attached to a C=O group. The ¹³C-NMR and DEPT spectra of **2** showed resonances for 30 C-atoms, including seven Me, eleven CH₂, and

	2		3	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$
CH ₂ (1) or CH(1)	3.05 (<i>dt</i> , $J = 1.2$, 14.1, 14.3; H _{β}) 2.70 (<i>dd</i> , $J = 2.8$, 14.1; H _{α})	39.0	4.00 ^b)	75.8
$C(2)$ or $CH_2(2)$		211.4	$2.54-2.56 (m; H_a), 1.98^{b} (H_{\beta})$	35.0
H-C(3) or $C(3)$	3.83 (dd, J = 2.3, 11.7)	77.2		212.3
H-C(4)	1.30 - 1.34(m)	54.8	2.26 (q, J = 6.7)	55.9
C(5)		38.0		43.3
CH ₂ (6)	1.91 - 1.96 (m)	41.1	1.85 - 1.88 (m)	41.8
$CH_2(7)$	$1.47 - 1.51 \ (m)$	17.3	1.46 - 1.49 (m)	17.9
H-C(8)	1.39 - 1.44(m)	53.8	1.52 ^b)	53.8
C(9)		41.8		42.0
H - C(10)	1.37 ^b)	60.8	1.62 (d, J = 11.2)	57.4
CH ₂ (11)	1.86 - 1.91 (m)	29.5	1.98 ^b)	30.2
$CH_{2}(12)$	1.37 ^b)	30.5	1.38 - 1.41 (m)	31.0
C(13)		39.7		39.8
C(14)		38.2		37.5
CH ₂ (15)	1.29 ^b), 1.47 ^b)	32.7	1.30 ^b), 1.50 ^b)	32.7 ^b)
CH ₂ (16)	$1.38 - 1.41 \ (m), \ 1.56^{b})$	35.9	1.52 ^b)	36.0
C(17)		30.0		29.9
H-C(18)	1.56 ^b)	42.6	1.52 ^b)	42.7
CH ₂ (19)	1.18 - 1.20 (m)	35.3	1.20 - 1.25 (m)	35.3
C(20)		28.1		28.1
CH ₂ (21)	1.29^{b}), 1.47^{b})	32.7	1.30 ^b), 1.50 ^b)	32.7 ^b)
CH ₂ (22)	0.95 - 0.98, 1.48 - 1.51 (2m)	39.2	$0.94 - 0.96 (m), 1.50^{b}$	39.3
Me(23)	1.09 (d, J = 6.6)	10.9	0.97 (d, J = 6.8)	6.7
Me(24)	1.21 (s)	14.0	0.82(s)	14.7
CH ₂ (25)	4.00, 4.05 (2d, J = 11.5)	63.7	$3.85 (d, J = 11.7), 4.00^{b})$	63.0
Me(26)	1.00 (s)	20.3	1.07(s)	20.1
Me(27)	0.96 (s)	18.5	0.99(s)	18.6
Me(28)	1.17 (s)	32.2	1.17(s)	32.2
Me(29)	0.95 (s)	35.0	0.95(s)	35.0
Me(30)	0.98(s)	31.7	0.99 (s)	31.7

Table 2. ¹*H*-*NMR* (400 MHz) and ¹³*C*-*NMR*^a) (100 MHz, DEPT) Data of **2** and **3** in $CDCl_3^{-1}$). δ in ppm, J in Hz.

five CH groups, and seven quaternary C-atoms. A notable feature was the appearance of a downfield quaternary-C-atom signal at $\delta(C)$ 211.4, which was due to a C=O group. These data suggested that **2** is a friedelane triterpene with one ketone and two OH groups.

In the ¹H,¹³C-HMBC experiment (*Fig. 2*) of **2**, correlations were observed between CH₂(1)¹) and C(2), C(3), C(5), and C(10), between H–C(3) and C(4) and C(23), and between CH₂(25) and C(9), C(10), and C(11). Thus, the C=O group was located at C(2), and the primary and secondary OH groups were situated at C(25) and C(3), respectively. The relative configuration of **2** was established on the basis of the ROESY experiment and PC Model [9]. Thus, ROE correlations were observed between the H-atom signal at δ (H) 3.05 (*dt*, *J* = 1.2, 14.1, 14.3, CH₂(1)) and the H-atom signal at δ (H) 1.21 (*s*, Me(24)), between the H-atom signal at δ (H) 3.05 and 1.21, and between the H-atom signals at δ (H) 4.00 and 4.05 (2*d*, *J* = 11.5) and the H-atom signals at δ (H) 1.21 (*s*, Me(24)) and 1.00 (*s*, Me(26)). These correlations allowed the assignments of the α - and β -H-atoms at C(1) and revealed that the secondary OH group at C(3) was in a α -configuration and the primary OH group was at C(25) in a β -configuration as shown in *Fig. 1*.

Fig. 2. Significant HMBC $(H \rightarrow C)$ data for 2 (left) and selected ROESY correlations for 3 (right)

All of these data and a comparison with those found in the literature for 3α -hydroxyfriedelan-2-one [10] established the structure of **2** as 3α ,25-dihydroxy-friedelan-2-one¹).

Compound **3** had the same molecular weight as **2**, and interpretation of the ¹H- and ¹³C-NMR data (*Table 2*) showed it to be a friedelane triterpene with one ketone ($\delta(C)$ 212.3), a HOCH₂ group ($\delta(H)$ 3.85, 4.00, $\delta(C)$ 63.0) and a HO–CH group ($\delta(H)$ 4.00, partially overlapping, $\delta(C)$ 75.8). The presence of absorption bands at 3454 and 1712 cm⁻¹, and 273 nm, in the IR and UV spectra, respectively, supported the presence of these groups. This was confirmed by 2D-NMR experiments (HMBC, ROESY). Thus, the correlations observed in the HMBC experiment between the C-atom signal at $\delta(C)$ 212.3 and the H-atom signals at $\delta(H)$ 0.97 (d, J = 6.8, Me(23)), 2.26 (q, J = 6.7, H–C(4)), 2.54–2.56 (CH₂(2)), and 4.00 (partially overlapping, H–C(1)) located the C=O group at C(3)¹). Moreover, correlation of the H-atom signal at $\delta(H)$ 4.00 with the C-atom signals at $\delta(C)$ 212.3 (s, C(3)), 42.0 (s, C(9)), and 57.4 (d, C(10)) and correlation of the H-atom signals at $\delta(H)$ 3.85, 4.00 with C(9) and C(10), located the secondary and primary OH groups at C(1) and C(25), respectively.

The relative configuration of the OH groups were determined as β by analysis of a ROESY experiment (*Fig. 2*), showing ROE correlations between H-C(1) and H-C(4) and H-C(10), and between CH₂(25) and Me(24) and Me(26). All these data established the structure of **3** as 1β ,25-dihydroxyfriedelan-3-one¹).

Compounds 4–7 were elucidated as friedelin (4) [11], 2α -hydroxy-3-oxofriedelan-30-oic acid (5) [12], 28-hydroxyfriedelan-1,3-dione (6) [13], and 29-hydroxyfriedelan-1,3-dione (7) [14], respectively, with the help of spectroscopic techniques. Their ¹H- and ¹³C-NMR data were in agreement with the ones reported in the literature.

Our work was supported by the DGES (CTQ2006-13376/BQU), and by the FICIC-G.I. (05/2008). *N. R. P.* thanks to the Gobierno de Canarias for a fellowship.

Experimental Part

General. TLC: Polygram[®] Sil G/UV₂₅₄, Macherey-Nagel foils. Purification was performed using silica gel (SiO₂; 40-63 µm, Merck, and HPTLC-Platten-Sil 20 UV₂₅₄, Macherey-Nagel) and Sephadex LH-20 (Pharmacia). Optical rotations: Perkin-Elmer 241 automatic polarimeter; $[\alpha]_D$ values are given in 10⁻¹ deg cm² g⁻¹. UV Spectra: Jasco V-560 instrument, in abs. EtOH. IR Spectra: Bruker IFS 55 spectrophotometer, in CHCl₃. ¹H- and ¹³C-NMR Spectra: Bruker Avance at 400 MHz and 100 MHz, resp. EI-MS and HR-EI-MS: Micromass Autospec spectrometer.

Plant Material. Crossopetalum lobatum LUNDELL was collected in Margarita, Colon, Panama, in February 2002. A voucher specimen (FLORPAN 1051) is deposited with the Herbarium of the University of Panama.

Extraction and Isolation. The dried leaves of *C. lobatum* (0.5 kg) were exhaustively extracted by refluxing with EtOH, giving 112 g of dried extract. The EtOH soluble extract was taken to vacuum dryness and submitted to a SiO₂ flash chromatography (FC), using hexane/AcOEt mixtures of increasing polarity as eluent to afford 60 fractions, which were grouped after TLC. *Fr.* 30-42 were combined, rechromatographed on SiO₂, and eluted with hexane/AcOEt (1:1) to give **1** (3.2 mg), **2** (6.0 mg), **3** (5.4 mg), **4** (160.0 mg), **5** (5.1 mg), **6** (4.0 mg), and **7** (14.5 mg).

3a,25-Dihydroxyfriedelan-2-one (=(3S,4R,4aS,6bR,8aR,12bS,14aR)-Icosahydro-3-hydroxy-14a-(hydroxymethyl)-4,4a,6b,8a,11,11,12b-heptamethylpicen-2(1H)-one; **2**). White amorphous solid. [a]₂₀²⁰ = +3.0 (c = 0.09, CHCl₃). UV (EtOH): 274 (2.56). IR (film): 3479, 2926, 2858, 1713, 1464, 1386, 1057. ¹H-NMR: 3.52 (d, J = 3.5, HO-C(3), 1 H); for other signals, see *Table 2*. ¹³C-NMR: *Table 2*. EI-MS: 458 (3, M^+), 443 (5, [M – Me]⁺), 427 (18, [M – CH₂OH]⁺), 409 (7, [427 – H₂O]⁺), 369 (10), 305 (53), 205 (88), 123 (61), 109 (73), 95 (94), 69 (100). HR-EI-MS: 458.3772 (M^+ , C₃₀H₅₀O[±]; calc. 458.3760).

 1β ,25-Dihydroxyfriedelan-3-one (=(1R,4R,4aS,6bR,8aR,12bS,14aS)-Icosahydro-1-hydroxy-14a-(hydroxymethyl)-4,4a,6b,8a,11,11,12b-heptamethylpicen-3(2H)-one; **3**). White amorphous solid. [a]₂₀²⁰ = -17.0 (c = 0.20, CHCl₃). UV (EtOH): 273 (2.51), 262 (2.51). IR (film): 3454, 2946, 2867, 1712, 1457, 1386, 1049, 979. ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 458 (4, M^+), 427 (22, [M – CH₂OH]⁺), 409 (5, [427 – H₂O]⁺), 369 (8), 305 (61), 275 (14), 263 (17), 247 (19), 233 (11), 205 (100), 191 (28), 123 (44), 109 (56), 95 (70). EI-MS: 458.3789 (M^+ , C₃₀H₃₀O₃⁺; 458.3760).

REFERENCES

- A. G. González, I. L. Bazzocchi, L. M. Moujir, I. A. Jiménez, in 'Studies in Natural Products Chemistry, Bioactive Natural Products (Part D), Vol. 23', Ed. Atta-ur Rahman, Elsevier Science Publisher, Amsterdam, 2000, pp. 649–738.
- [2] A. S. Spivey, S. Weston, S. Woodhead, Chem. Soc. Rev. 2002, 31, 43.
- [3] N. Alvarenga, E. A. Ferro, in 'Studies in Natural Products Chemistry, Bioactive Natural Products (Part M), Vol. 33', Ed. Atta-ur Rahman, Elsevier Science Publisher, Amsterdam, 2006, pp. 239– 307.
- [4] W. N. Setzer, M. C. Setzer, Mini-Rev. Med. Chem. 2003, 3, 540.
- [5] I.-C. Sun, Y. Kashiwada, S. L. Morris-Natschke, K.-H. Lee, *Curr. Top. Med. Chem.* 2003, *3*, 155.
 [6] C. B. Gamlath, A. A. L. Gunatilaka, Y. Tezuka, T. Kikuchi, S. Balasubramaniam, *Phytochemistry*
- **1990**, *29*, 3189. [7] A. G. González, L. Moujir, I. L. Bazzocchi, M. D. Correa, M. P. Gupta, *Phytomedicine* **1994**, *1*, 149.
- [8] A. G. González, I. L. Bazzocchi, L. Moujir, A. G. Ravelo, M. D. Correa, M. P. Gupta, J. Ethnopharmacol. 1995, 46, 25.
- [9] PC Model, Serena Software, P.O. Box 3076, Bloomington, IN 47402-3076.
- [10] S. K. Talapatra, D. K. Pradhan, B. Talapatra, Indian J. Chem. 1978, 16, 361.
- [11] W. H. Hui, S. K. Szeto, Phytochemistry 1967, 6, 443.
- [12] A. G. González, N. L. Alvarenga, A. G. Ravelo, I. A. Jiménez, I. L. Bazzocchi, J. Nat. Prod. 1995, 58, 570.
- [13] H. Chávez, A. Estévez-Braun, A. G. Ravelo, A. G. González, J. Nat. Prod. 1998, 61, 82.
- [14] C. Nogueiras, I. Spengler, Á. Gutiérrez, I. Jiménez, R. Lacret, Rev. Latinoam. Quím. 2001, 29, 32.

Received June 30, 2008